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Ischial pressure ulcer is an important risk for every paraplegic person and a major public health issue.
Pressure ulcers appear following excessive compression of buttock's soft tissues by bony structures, and
particularly in ischial and sacral bones. Current prevention techniques are mainly based on daily skin
inspection to spot red patches or injuries. Nevertheless, most pressure ulcers occur internally and are
difficult to detect early. Estimating internal strains within soft tissues could help to evaluate the risk of
pressure ulcer. A subject-specific biomechanical model could be used to assess internal strains from
measured skin surface pressures. However, a realistic 3D non-linear Finite Element buttock model, with
different layers of tissue materials for skin, fat and muscles, requires somewhere between minutes and
hours to compute, therefore forbidding its use in a real-time daily prevention context. In this article, we
propose to optimize these computations by using a reduced order modeling technique (ROM) based on
proper orthogonal decompositions of the pressure and strain fields coupled with a machine learning
method. ROM allows strains to be evaluated inside the model interactively (i.e. in less than a second) for
any pressure field measured below the buttocks. In our case, with only 19 modes of variation of pressure
patterns, an error divergence of one percent is observed compared to the full scale simulation for
evaluating the strain field. This reduced model could therefore be the first step towards interactive
pressure ulcer prevention in a daily set-up.

© 2017 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction buttocks and try to regularly change their sitting posture to prevent

PUs. Unfortunately, this is not sufficient since subjects’ attention

More than 50,000 people suffer from paraplegia in France [5].
Among them, 80% will develop a pressure ulcer (PU). PUs result
from the compression of soft tissues between a bony prominence
and a supporting surface, e.g. a wheelchair. PUs start near bony
structures and progress towards the skin, causing significant sub-
cutaneous damages before being clinically observable. Paraplegic
persons use cushions to evenly distribute pressure below their
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can decrease over time.

Measuring pressures at the skin/seat interface can help to pre-
vent skin injuries [12], but these measurements cannot predict
dangerous internal tissue strains responsible for deep PUs [7].
Intuitively, a person having sharper ischial tuberosities is more at
risk of developing a PU than a person with blunt ischia, even with
similar pressures below their buttocks [14]. Estimating internal
strains is consequently the only solution to assess PU risk level.
Animal studies [9] suggest that two strain thresholds should be
monitored as there is a long term risk of ischemic PU if the internal
strains are above 20% for about 2 h, and a short term risk of me-
chanical PU if the strains exceed 50% for about 10 min (these values,
namely 20% for 2 h and 50% for 10mn, are orders of magnitudes that
should be taken with cautious in the case of human tissues). These
internal strains can only be estimated with a subject-specific
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biomechanical model to study mechanical interactions between
soft tissues and bony prominences [4].

The gluteal region has been modelled by several groups for
different applications. A real-time 2D biomechanical Finite Element
(FE) model using a linear elastic constitutive law for the muscles
(E = 8.5 kPa, v = 0.49) and the fat/skin tissues (E = 32 kPa, v = 0.49)
was proposed by Ref. [8] to evaluate the internal strains in the
buttocks of a paraplegic person. Earlier, a 3D FE hyper-elastic model
using a Neo Hookean constitutive law to simulate the skin
(E = 150 kPa, v = 0.46) and a Mooney Rivlin constitutive law to
simulate the other soft tissues (A1 = 1.65 kPa, A2 = 3.35 kPa,
v = 0.49) was proposed by Ref. [15]. It showed that the pressure
distribution and therefore the internal strains depend on the
stiffness of the chair cushion, on the constitutive material of the
buttocks' soft tissues, and on the subject's posture. Using another
3D FE hyper-elastic model [11], have studied the simulation
sensitivity to the elasticities of the various layers of soft tissues in
the buttocks, concluding that generic values of 200 kPa, 30 kPa, and
100 kPa can be used for the skin, fat and muscles, in a Neo Hookean
context.

The goal of this paper is to study the feasibility of coupling a 3D
biomechanical model with an embedded pressure mat to form a
personalized PU risk assessment device. To this aim, we introduce a
reduced order modeling technique to run our FE hyper-elastic
buttock model in real-time and to assess internal strains over
time in different sitting postures.

2. Materials and methods
2.1. Buttock FE hyper-elastic model

The modeling and simulations are performed within the Arti-
Synth open source framework [10] (www.artisynth.org) using a
dynamic numerical solver. This study is based on the morphology
of a male subject (38 years old, 100 Kg and 1.90 m). The external
surfaces of the skin, muscles and bones were semi-automatically
segmented from a CT scan (image size 512 x 512 x 403, resolu-
tion 0.97 x 0.97 x 1 mm?), using the ITK-Snap snake tool [16]. The
muscles were segmented as a single entity as they were too difficult
to separate. To have the least deformed contours of the modeling
domain, the subject was lying on his side in the CT scan, which
limited the distortion in one side of his buttocks. However, de-
formations induced by gravity were not compensated for. The
external surfaces of our model are a combination of the least
deformed side and its mirrored, contralateral part.

A meshing tool provided by Texisense Company was used to
generate a three layer FE mesh, corresponding to the skin, fat and
muscles. The hex-dominant mesh is composed of 27,649 linear
elements, Fig. 1a. The skin is a 1-element 1.5 mm-thick layer of
elements [6] at the FE mesh surface. The segmented muscle surface
delimits the muscle elements. Finally, the elements between the
skin and muscle layers are considered as fat tissues. Fig. 1b shows a
mesh cross section after identifying these structures. In this model,
the bones are assumed to be rigid. The nodes at the tissue/bone
interface are attached to these bones with no sliding.

The three soft tissues layers are modelled using a Neo Hookean
constitutive material [1] to simulate a nonlinear hyper-elastic
behavior. The strain energy density function W is given by:

W =Cioli =3)+ (- 1)?/D

where I; is the first invariant of the left Cauchy-Green deformation
tensor, Cqg is a material parameter (under a small strain hypothesis,
it is related to the Young's modulus E = 6* Cyp), and ] is the
determinant of the deformation gradient F. D is the material
incompressibility, related to the Poisson ratio v [D=(1-2v)/Cyo)].

The mechanical properties of the different soft tissue layers are
taken from Ref. [11]. Equivalent Young modulus values of 200 kPa
(C10 = 33 kPa), 30 kPa (Cq9 = 5 kPa), and 100 kPa (C1p = 17 kPa) are
respectively chosen for the skin, fat and muscles. A Poisson ratio of
0.49 is used for these three layers, as they are assumed to be quasi-
incompressible. These mechanical properties are generic: for better
accuracy, subject specific properties would need to be measured
(for example, using an elastography procedure or an in vivo aspi-
ration device [13]).

2.2. Boundary conditions

The acquisition of pressures below the sitting subject is per-
formed using a commercial pressure sensor: TexiMat (www.
texisense.com). It is composed of a textile matrix of 32 x 32 sen-
sors of 1.5 cm x 1.5 cm each. Pressure acquisition lasted 3 h, during
which the subject could move freely, Fig. 2: put his back on the
chair rest, lift his feet, move his weight on either side of the but-
tocks. Shear loads on the cushion were not measured by the sensor
and the subject was asked to avoid as much as possible leaning
postures. To determine where to apply the pressure on the model,
the ischial tuberosities are detected on the pressure frames. The
ischial tuberosity footprints on the frames are two relatively close
pressure peaks. The first stage of the detection pipeline consists in a
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Fig. 1. (a) Finite element model of the buttocks, (b) Sagittal cross section showing the three layers of materials defining the buttock model: skin, fat and muscles. Bones are assumed

to be rigid and fixed to the nearby FE nodes.
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Fig. 2. Two pressure map examples where the subject sits with (a) his arms on his knees, back away from the back-rest, and (b) most of his weight on his left buttock. The highest
measured pressure, in red, is (a) 1.38 N cm 2 and (b) 1.57 N cm ™2, (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

— -

Fig. 3. Ischial detection with (a) Gaussian smoothing, (b) Laplacian filtering, and (c) thresholding and morphological filtering to pair the ischium (empty circles are possible

matches, full circles are the detected ischium).

Gaussian filtering to remove sensor noise (Fig. 3a). In the second
stage, a Laplacian filter with a 9-pixel kernel followed by a binary
threshold on the normalized resulting image are applied to detect
blob-like structures that could correspond to ischial pressure
footprint (Fig. 3b). This filter is independent of pressure magni-
tudes. Once the pressure image has been thresholded, several pairs
of regions of interest can potentially correspond to the ischia. At the
last stage, we use a geometric filter based on the relative position of
each pair of centroids to find the most appropriate one (Fig. 3¢). The
retained ischia are matched below those of the FE model. Finally,
the buttock's surface FE nodes are projected orthogonally onto the
pressure array. A bilinear interpolation between the four sensors
surrounding each projected node is performed to compute the
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Fig. 4. Mean Error over Mean Value (MeanEMV) for 5, 10, 15 and 19 pressure modes,
and a targeted precision for the strain statistical reduction of 0.2, 0.5, 1, 2, and 5%.

pressure applied at each FE node and to produce a continuous 3D
pressure field. The normal at the buttock surface is taken as the
pressure normal. In order to ensure simulation convergence,
interface pressures are applied following a linear ramp from 0% at
0.1 sto 100% at 1.1 s. After 1.1 s, the pressure is maintained until the
continuum reaches a steady state at about 1.3 s.

2.3. Reduced order model

For each pressure map, the FE buttock model requires about
20 min to compute the simulation and assess internal strains. To
design a solution that will provide a real-time computation of our
FE model we used the Reduced Order Modeling (ROM) technique
developed by ANSYS (www.ansys.com). For a given subject, ROM is
applied on the outputs of the FE solver (ArtiSynth) which computes

Relative max error on the 50 validation

7 ~i—10 modes

15 modes

=>e=19 modes

max error /mean value (in %)

0 0.5 1 15 2 25 3 35 4 45 5
Targeted precision for the strain compression (in %)

Fig. 5. Max Error over Mean Value (MaxEMV) for 5, 10, 15 and 19 modes, and a tar-
geted precision of 0.2, 0.5, 1, 2, and 5%.
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the model deformations. Note that for each new subject, a new
ROM must be computed as subjects’ morphology and tissue me-
chanical properties vary greatly and thus influence internal strains.

More precisely, an off-line learning step is first performed for
each subject model: a set of pressure frames acquired for the
subject is compressed into a small number of modes by using a
proper orthogonal decomposition inspired by Ref. [3]. This tech-
nique allows each pressure frame to be linearly described by a small
set of scalar coefficients. Then the most relevant pressure frames to
describe the pressure variations are selected, based on an optimal
repartition of the learning points in the mode coefficients' space.
The FE analyses corresponding to this training set of typical
boundary conditions are carried out and the resulting strain fields
are also compressed into a small number of modes. A machine-
learning approach is then used to learn the relationship between
the strain field modes and the pressure map modes. This approach
uses response surface techniques based on Kriging interpolation
and available in ANSYS 18.0 Design Xplorer.

Once built, the ROM interactively gives an accurate approxi-
mation of the solver solution for a new set of interface pressures
applied on the model. For this, the new pressure map is first pro-
jected by the ROM algorithm onto the basis of pressure modes.
Then, from the projection coefficients, the ROM evaluates the
response surface that gives the strain field coefficients. The whole
strain field is finally built as a linear combination of strain modes.
All these steps are performed in nearly real-time.

The accuracy of this ROM process is measured on the resulting
strain fields and it depends on three parameters: the number of
pressure modes chosen to compress the pressure field, the targeted
precision of the statistical reduction of the strain field (related to
the number of modes used to represent the strain field), and the
number of pressure frames in the training set.

3. Results

In our case, the ROM was generated based on 9100 pressure
frames selected from a 3-h recording acquired at a framerate of
1 Hz below the sitting subject. Statistical analysis showed that 19
pressure modes were able to describe the 9100 pressure frames
with a root mean square error of 1.98%. Then, the most significant
pressure frames were selected based on their variations across
those modes, to serve as a training set for the ROM. We chose three
training sets: the first 100, 150, and 200 most significant frames. We
then selected 50 random frames, outside these training sets, to
serve as validation frames for the comparison between the strains
estimated by the ROM and the strains computed by the actual FE
model.

A sensitivity analysis was performed to assess the three ROM
parameters' influence onto the accuracy of the estimated strain
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field.

The strain field error on each validation pressure frame f was
calculated by using the Euclidean norm of the error field, given by
the node to node (i = 1 to n, with n the number of FE nodes) dif-
ference between the m = 50 exact strain fields at node i in frame f,
FEstrain(f, i), and the m estimated strain fields ROMstrain(f, i). This
error was then normalized with the mean Euclidean norm value of
those exact strain fields. Finally we considered the mean error over
the mean value, MeanEMV, and the max error over the mean value,
MaxEMYV, of this relative error on the 50 validation frames to assess
the accuracy of the estimated strain field:

m " (FEstrain(f, i) — ROMstrain(f, i))*
P Z@H( 7. )
m &

=1 S \/ZleFEstrain(f, i)2
(1)

max{f=1...m} \/Z?:1 (FEstrain(f,i)—ROMstrain(f i)

MaxEMV =
> \/Z?:1FEstrain(f,i)2

(2)

At first, we fixed the training set frame number to 100, and
estimated the sensibility over the two other parameters, namely
the number of pressure modes and the targeted precision. Fig. 4
summarizes the sensitivity analysis over MeanEMV for 5, 10, 15
and 19 pressure modes, and a targeted mean precision of the sta-
tistical reduction for the strain field of 0.2, 0.5, 1, 2, and 5%. This
figure shows that a plateau is reached if a targeted precision
parameter of 0.5% and 19 modes are used, with an actual MeanEMV
of 1.09%. Preferring 15 modes could be interesting when ported to a
micro-controller as it reduces the computation time with only a
slight increase of the errors compared to 19 modes.

The same conclusions can be drawn from Fig. 5, summarizing
the sensitivity analysis over MaxEMV. A plateau is reached if a
targeted precision parameter of 2% and 19 modes are used, with an
actual MaxEMV of 2.63%. In this figure, outliers appear on the 10-
mode curve for targeted precisions below 1%. This is due to a
specific node in the buttock model, presenting a large strain, not
representative of the rest of the FE mesh and leading to a strain
misevaluation for a validation pressure frame. This event can be
related to the uncertainties induced by considering maximal strains
for PU prevention. Using “cluster analysis” could overcome this
limitation (see Ref. [2] for details) since it is based on the study of
the largest volume of contiguous elements having a strain above a
certain threshold, therefore smoothing possible misinterpretation
due to a single node with a high strain value.

We kept 19 pressure modes and a targeted precision of the
strain field statistical reduction of 0.5% for our second sensitivity
analysis aiming at defining an optimized number of learning frames
over the three sets defined earlier. We analyzed the MeanEMV and
MaxEMV ratios given by the ROM on the 50 random validation
frames, for 100, 150 and 200 learning frames. Fig. 6 shows that a
plateau is reached for 150 learning frames with a MaxEMV of 1.64%.
A ratio of 0.79% is recorded for MeanEMV for 200 frames.

With no more than 200 pressure frames in the learning set up,
19 pressure modes and a targeted precision of 0.5% for the strain
compression, it is therefore possible to reach accuracies of 0.79%
and 1.64% respectively for MeanEMV and MaxEMV. Using these
ROM settings, it is thus possible to compute accurately the strain
field for any acquired pressure frame in less than a second, on a
standard PC, instead of 20 min for the FE hyper-elastic model. The
resulting deformation field, Fig. 7, permits a mapping of the PU
formation risk in the buttock soft tissues, while the pressures
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Fig. 7. Two examples of deformation fields, where the subject sits with: (a) his arms on his knees, back away from the backrest, leading to an even deformation field in his soft
tissues below the ischial tuberosities and sacrum (maximum strain in red is 23%), and (b) most of his weight on his left buttock, leading to higher strains below his left ischia
(maximum strain is 31%). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

evolve below the subject.
4. Conclusions

A 3D FE non-linear subject-specific buttock model was gener-
ated to provide pressure ulcer prevention in the gluteal region. The
personalized FE model is composed of three soft tissue layers: skin,
fat and muscles, all modelled with Neo-Hookean constitutive ma-
terials. PU prevention can be achieved by continuously monitoring
strains within soft tissues undergoing compression. Because FE
estimation of internal strains on such a complex model takes about
20 min, a Reduced Order Model (ROM) was introduced. The ROM
was built by statistically reducing 9100 pressure frames acquired
below the sitting subject, and by projecting the responses of the
personalized biomechanical model on 19 pressure modes. A
sensitivity analysis showed that the optimal ROM settings were 19
modes, a targeted precision of the strain field statistical reduction
of 0.5%, and 200 learning frames. Using these parameters, the
optimal ROM provides strain fields in less than a second, with an
accuracy of 0.79%.

To demonstrate the feasibility of a PU prevention device, we
used the TexiMat textile pressure sensor to continuously measure
pressure frames under the sitting subject. These measurements,
coupled with real-time strain evaluation inside his gluteal soft
tissues provided by the ROM, and compared to the time and strain
threshold proposed by Ref. [9], allowed interactive PU risk assess-
ment. Since all on-line computations can be ported to a micro-
controller embedded within a pressure mat placed on a wheel-
chair, the ROM could be used in a daily PU prevention set-up. The
resulting device could wirelessly send warnings, through a smart-
phone or a watch, to the wheelchair user or the nursing staff in a
clinical setting. The training phase would take less than an hour,
while the patient would assume various key positions on his chair
(patient on one side of his buttocks, on both sides, with his back on
the chair ...), to initialize the ROM with the measured pressures
under his buttocks, and consequently avoiding a risk of creating a
pressure ulcer for patients at risk.

Nevertheless, before using this reduced model in a daily PU
prevention set up, the software needs some adjustments. Besides
porting the existing ROM technology onto a mobile platform,
another technical hurdle is the ability to easily generate an accurate
subject-specific biomechanical model from available medical data.
To this aim, the method proposed by Ref. [2] could be of interest
and would ease the generation of the patient specific reduced

model needed for each new subject.
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